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Quantum gravidynamics 11. Path integrals with spin 

M Clutton-Brock? 
School of Physics, The University, Newcastle upon Tyne, NE1 7RU, U K  

Received 29 April 1974 

Abstract. Spin operators in a path integral can be collected into a path operator, which 
appears quite separate from the action and outside the exponential. In this way the problem 
of non-commuting operators inside the exponential is avoided. 

In curved space-time spinor matrices in the path operator must be referred to different 
frames at different points along the path. The components of the spinor matrices referred 
to different frames must be connected by means of the spinor parallel propagator. 

1. Introduction 

In part I (Clutton-Brock 1975) we discussed path integrals without spin. We must now 
introduce spin, and discuss path integrals for Dirac particles. 

If the path integrals are taken over coordinate space only, spin operators will appear 
in the action S.  The presence of non-commuting spin operators inside the exponential 
exp(iS) complicates the path integral. Hoyle and Narlikar (1971) show that, in their 
action-at-a-distance electrodynamics, the action turns out to be a scalar in spite of 
containing a product of y matrices. One will not always be so fortunate, but Hamilton 
and Schulman (1971) have shown how a product integral, which is a generalization of 
a path integral, is capable of handling exponentials of products of non-commuting 
operators. 

We shall take path integrals over both coordinate and momentum space. The spin 
operators then appear outside the exponential, quite separate from the action. As in 
the Klein-Gordon case of part I, the transition amplitude can be written in the form 

TFI = $FQ(Path)ll/, ~ X P [ ~ S ( ~ F  + Path + &)I &Path), (1.1) 

where S is the classical action and Q is the path operator. In the Dirac case, the classical 
action is entirely independent of the spin, and the spin operators are all collected into 
the path operator which appears outside the exponential. The purpose of this part I1 
is to find the path operator for a Dirac particle. 

In curved space-time spin does introduce an extra complication. Spinor components 
must be referred to a tetrad reference frame, which in curved space-time cannot be 
constant. The spinors along a path must therefore be connected by the spinor parallel 
propagator. The spinor parallel propagator is the two-point spinor analogous to the 
tensor parallel propagator. The general theory of two-point spinors has been discussed 
by Lichnerowicz (1964); for our purpose we need only a few simple properties of the 
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spinor parallel propagator which can be obtained from the Lorentz invariance of the 
Dirac equation. 

The spinor parallel propagator can be used to define covariant differentiation of 
spinors, which appears in the curved-space version of Dirac’s equation. The exact 
kernel is the Green function of Dirac’s equation ; an approximate kernel can be found, 
as in part I, by a suitable generalization of the free-particle flat-space kernel. This 
approximation is accurate for small intervals, and a path integral is a convolution of 
kernels for many small intervals. We can find the path operator for a Dirac particle 
simply by collecting up the appropriate terms in the resulting expression for the path 
integral. 

2. The spinor parallel propagator 

Just as the tensor parallel propagator $(x, x’),,, takes a tensor T by parallel transport 
from x’ to x, 

T‘(x) = $(x, x’),,,Tm(x’), (2.1) 
so the spinor parallel propagator A(x, x’) takes a spinor $ by parallel transport from 
x‘ to x :  

$(XI = 4x9 x’)$(x’). (2.2) 
The spinor frame is connected to the tensor frame via a tetrad field in such a way that 
the tetrad components y” of Dirac’s gamma matrices are constant. From the invariance 
of the Dirac equation 

(YU4m+m)$ = 0, (2.3) 

A(x, x‘)y‘ = g“(x, x’)gyBA2(x’, x), (2.4) 

y” = $(x, x’)&x, x’)y’A(x’, X) (2.5) 

we can derive the commutation relation 

which can be put in the equivalent forms 

and 
y‘gu(X, x’)’ = A(x, x’)ySA(x’, x). 

If we express the parallel propagators in terms of elementary generators P and l2, 

$(x, x’)’ = exp[P“(x, x‘)’] = q; + p”s ++PflP$ + . . . , 
A(x, x’) = exp[ll(x, x’)] = I +I3 +in’+ . . . , 

n = -- :cYBPu, with cYB = 3(y‘yB - ~ B Y “ ) .  

(2.7) 

(2.8) 

(2.9) 

then we can obtain from the commutation relation (2.6) the relationship 

for signature (+ + + -). For the opposite signature the sign is reversed. 

parallel propagators for an infinitesimal interval 
We can express the covariant derivative of both tensors and spinors in terms of the 

o,,,Tk(x) dx” = &x, x + dx),,,T”(x + dx) - Tk(x), 

Dm$(X) dx” = A(x> x + dx)$(x + dx) - $(x). 

(2.10) 

(2.1 1) 
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Using (2.7H2.9) we find 

A ( x , x + ~ x )  = I -ia"'[g,(x, x+dx)p-~,p]. 

Applying (2.10) to the tetrad Ai(x) we find 

Ailm dx" = gk(x, x + dx),,,A;(x + dx) - A ~ ( x ) ,  
or 

AukAilm dx" = gAX, X + dx)p - V u p  9 

so 
A(x, x + dx) = I - fa"pl,,Ail,,, dx". 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

The last term on the right is the spinorial connection 

r m  = - p p A o r k A ! l m ,  (2.16) 

in terms of which the covariant derivative of a spinor is 

Dm$ = (dm + r m ) $ .  

The covariant derivative of the adjoint spinor is 

(2.17) 

gbm = $(%m -rm)? (2.18) 

which follows from the invariance of $$ or alternatively from the adjoint of (2.11) 
together with 

(2.19) 5 = yoAyo = A- l .  

Dirac's equation in curved space-time is 

( - iykDk m)$ = 0, (2.20) 

which agrees with the form obtained by Fock (1929) and Dirac (1958). 

3. An approximate kernel for Dirac particles 

For Dirac particles, the relationship between the wavefunction at a point x" and the 
wavefunction on a three-surface V' enclosing x" is 

$(x") = K(x", x')N$(x') dV', (3.1) s 
where, 

= y k N k  (3.2) 
and N ,  is a vector orthogonal to the invariant element of three-surface dVof magnitude 
such that 

Nk dV = G E k l m n  dx' dx" dx" (3.3) 
and K(x", x') is the spinor kernel. As in part I we can use Gauss's theorem to transform 
(3.1) into an integral over the four-content C' enclosed by V ' :  

$(x") = D;{K(x", X')Y~+(X')} dC'. (3.4) J 
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The product Kyk$ must transform like a spinor at x”, but a tensor (not a spinor) at x’, 
so that K(x”, x’) transforms like an adjoint spinor at x’. In the appendix we show that 
the tensor yk has zero divergence 

Dkyk = 0, (3.5) 

ok(Krk$) = K ( b k y k +  rkak)$ .  (3.6) 

D;(K(x”, x‘)yk$(x’)) = K(x”, x‘)(b;yk - im)$(x’). 

so that, if K is an adjoint spinor, 

Now if we substitute for Dk$ using Dirac’s equation we obtain 

(3.7) 

Putting (3.7) into (3.4) tells us immediately that the differential equation satisfied by 
the kernel is 

K(x”, x’) (bhyk- im)  = 9(x” ,  x’), (3.8) 

where 9(x”, x’) is now the spinorial identity kernel : 

$(x”, x’) = (g”g’)- 1’484(x’’ - x’)I. 

In flat space-time equation (3.8) has the solution 

- y‘p, + m 
K(x”, x’) = - exp[ip,(x” - x ‘ )~ ]  2 d4P, 

V a b p a p b  + 

(3.9) 

(3.10) 

where the integral over p o  is taken along the Feynman contour so as to include the 
correct sheet of the momentum surface. As in part I we can generalize this to obtain an 
approximate kernel in curved space-time. We work in terms of the mechanical 
momentum 4 which is defined so as to give the momentum surface the simple form 

n(4) = qaP4,4p+m2 = 0. 

The ‘element of momentum surface’ is 

(3.1 1 )  

(3.12) 

where the correct sheet is assumed according to the Feynman prescription. In addition 
we use the notation w(4) to denote the ‘Dirac square root’ of Q4), or 

(3.13) w(4) = - y”4, + m. 
We must also replace Pk(X” - x ‘ ) ~  by the invariant integral 

(3.14) 

These prescriptions, which were developed ;n part I for the covariant Klein-Gordon 
kernel, would lead to the Dirac kernel 

Iz(x”, x’) -, i exp[ iS( x” ”) ] w(q) d*(q), (3.15) 

but this is not yet covariant. For the spinor matrix w(4) of (3.13) must be referred to some 
point xg on the geodesic joining x‘ and x”, but the kernel R(x”, x’) has to connect spinors 
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at x’ with spinors at x”. This involves the transport of a spinor from x’ to xq, multi- 
plication by w(q), and transport from xq to x”. The transport can be effected by the 
spinor parallel propagator, which gives the substitution 

w(q) + &”, x,)w(q)W,, x’). (3.16) 

This replacement is independent of where on the geodesic xq lies, since for example 

w(q”)A(x”, x’) = A(x”, x‘)w(q’), (3.17) 

as may be verified using the commutation relation (2.4). The covariant kernel for a 
Dirac particle is therefore 

R(x“, x’) = iA(x”, xq) (3.18) 

This is an approximation to the exact kernel which is accurate when the interval x” 4- x‘ 
is small. 

4. The path operator for Dirac particles 

The transition amplitude for a Dirac particle to go from a state 
surface V, to a state t+hF on a three-surface V, enclosed by V, is 

defined on a three- 

To see how to express this as a path integral, consider as in part I the simple path 

x1 + x3 4- x5 
q 2  + q4 

{path} = (4.2) 

The kernel K(x, , x5) is the convolution of two kernels K(x,, x3) and K(x3, x5), and 
if we use the form (3.18) for these kernels, we obtain 

K ( x 1 ~ x 5 )  = IK(x1.x3WQ,K(x3,x5)dV3 

= i2 [JJ A1,2w2A2,3R3A3,4w4A4,5 

x exp[iS( 4- x3 4- x5)] dR2 dV3 dR4 
q 2  + q 4  (4.3) 

We have used here the abbreviated notation 

A1,2 = Nx1 9 x2h w2 = w(q2)r dR2 = dR(q2). (4.4) 
If we identify x1 with xF and x5 with x1 and substitute (4.4) into (4.1), we obtain 

xexp [ is ( x3 x5)] dVl dR2 dV3 dR4dV5. 
+- q4  (4.5) 
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This has the path integral form 

GI = J $FQ(PW$I ex~[iS(  VF + path + WI d(~ath) ,  (4.6) 

provided we identify 

d(path) = dVl d o 2  dV3 x . . . x dVZN- d o Z N  dV2,,, (4.7) 

as the 'element of path' for an N-step path, and 

Q(Path) = i N N 1 A 1 ~ 2 w 2 A 2 ~ 3 N 3  X . ' X ~ Z N -  ~ A z N -  I ,ZNWZNAZN.ZN+ I ~ Z N +  1 (4.8) 

as the path operator for a Dirac particle. Notice that the action inside the exponential 
is the classical action 

(4.9) 

which does not involve the spin; spin and the spinor operators are confined to the path 
operator (4.8) which is outside the exponential. The problem of non-commuting operators 
inside the exponential is entirely avoided. 
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Appendix 

We now prove that the divergence of the tensor y k  is zero : 

D k y k  = 0, 

so that 

D k ( T r k $ )  = $ ( f i k y k  + y k B k ) $ >  

where the derivatives on the right-hand side are spinorial covariant derivatives, defined 
by (2.16H2.18). Since the tetrad components y p  are constant, the left-hand side of 
(A.2) gives 

(-4.3) D k ( $ y k $ )  = $cackYk + y k J k ) $  + $y";[k$. 

$ ( b k y k + y k B k ) $  = T ( a c k y k + Y k ~ k ) $ - $ ( r k y k - y k r k ) $ .  (A.4) 

r k y k - y k r k  = - a ~ ~ ~ , " ~ S m l k ( o " B y ' - y ' o " B ) .  ( '4.5) 

The right-hand side of (A.2) is 

From the definition (2.16) of the spinorial connection we have 

Using the commutation relation 
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which is what we set out to prove. 
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